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ANALYSIS OF THE STABILITY OF A THIN LIQUID FILM
ADJACENT TO A HIGH-SPEED GAS STREAM
By Philip R. Nachtsheim

Ames Research Center

SUMMARY

Oblique wave formation in the melt layer of a body entering the
atmosphere is examined. The three-dimensional disturbance equations of the
liquid including the effects of viscosity are formulated. The disturbance
motion of the gas is taken into account neglecting viscosity. The Tollmien-
Schlichting type of instability in the 1liquid is excluded and only those modes
are considered for which the phase velocity of the disturbance is greater than
the velocity of the basic liquid flow at the gas-liquid interface. Numerical
and approximate analytic results are presented for waves in the liquid with
supersonic flow over their crests. A comparison with the numerical solutions
shows that the approximate analytic solutions are accurate for solving the
eigenvalue problem when the Reynolds number of the liquid film is small, that
is, for a highly viscous melt layer. The approximate solutions are obtained
in closed form. It is demonstrated that the mechanism of liquid wave genera-
tion is supersonic wave drag. The relation between the wavelength of the
disturbance and the other parameters involved in the eigenvalue problem is
determined and is presented for a wide range of these parameters.

INTRODUCTION

The theory of hydrodynamic stability has been employed by several authors
in analyzing the formation of waves in the melt layer of a body entering the
atmosphere.

Feldman (ref. 1) considered a liquid shear flow with wave crests parallel
to the stream direction (streamwise grooves) but neglected the disturbance
motion of the gas. Miles (ref. 2) considered a liquid shear flow with wave
crests normal to the stream direction, and although he did not include the
disturbance motion of the gas in calculating the stability of the liquid film,
he did indicate that the disturbance motion of the gas cannot be relegated to
a subsidiary role when the phase velocity of the disturbance wave is greater
than the velocity of the liquid at the gas-liquid interface. Chang and
Russell (ref. 3) considered wave crests normal to the stream direction and
they included the disturbance motion of the gas in their analysis. However,
the undisturbed liquid configuration considered by them was the classic Kelvin-
Helmholtz type, as treated by Lamb (ref. 4), namely, an infinitely deep,
initially quiescent liquid suddenly subjected to a disturbance, periodic in
time.



The waves considered in this paper are the type observed, for instance,
in reference 5. The crests of the waves are oblique to the stréam direction
(fig. 1); the problem considered is the three-dimensional disturbance of a

shear flow of a thin liquid film adjacent
External flow to a high-speed gas stream. The distur-
bance motion of the gas is accounted for in
a manner similar to that employed by Chang
and Russell (ref. 3).

The problem of oblique (three-
dimensional) wave formation cannot, in gen-
eral, be transformed to a two-dimensional
problem by employing Squires' theorem
(ref. 6). For example, in the case of a
supersonic gas stream, the gas flow over
the crests of the waves in the liquid film
may be either subsonic or supersonic,
depending on the direction of wave propaga-
tion. In subsonic flow, the disturbance
pressure of the gas is in phase with the
interface whereas in supersonic flow it is
in phase with the slope of the interface.
Clearly, the stability problem is different
for the two cases and therefore requires a
three-dimensional treatment. The primary

Wave normal Wave normal interest in the present investigation is

the coupling between the disturbance motion

of the gas and the stability of the liquid.

Figure 1.- Two sets of oblique waves. Specifically excluded are modes of energy

transfer as treated by Miles (ref. 2), that
transfer energy from the mean motion of the liquid to its disturbance motion.
As Miles pointed out this type of energy transfer occurs in the Tollmien-
Schlichting type of instability where the phase velocity of the disturbance
wave is less than the velocity of the liquid at the interface. Hence, to
study the effect of the disturbances in the gas on the stability of the liquid
film, consideration will be given to those possible modes mentioned by Miles
(ref. 2) for which the phase velocity of the wave is greater than or equal to
the velocity of the liquid at the interface. Of course, considering these
"fast" waves in the liquid raises the question of the Tollmien-Schlichting
type of instability in the gas, but this question can be ignored since in the
majority of practical applications the gas flow is likely to be turbulent.

In the following sections the three-dimensional disturbance equations are
formulated for the liquid and the gas, and for the boundary conditions. The
equations are then made dimensionless.

A numerical method of solving the eigenvalue problem and an approximate
analytic solution are presented. The approximate solutions are compared with
the numerical solutions. Then neutral curves resulting from the numerical
solution are presented for a selected range of the pertinent parameters.
Finally, the approximate solutions are presented in dimensional form for a
wide range of parameters for the small Reynolds numbers of the liquid film.
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FORMULATION OF DISTURBANCE EQUATIONS

Consider the stratified motion of a thin film of liquid over a solid
surface adjacent to a high-speed gas stream. For analyzing the stability of
this flow configuration, a perturbation is introduced into the describing equa-
tions for the liquid and the gas. The basic liquid flow is considered to be a
shear flow, and viscous effects are included in formulating the disturbance
equations of the liquid. The effect of viscosity is neglected in the distur-
bance motion of the gas. The only effect of the gas considered in the stabil-
ity analysis is the pressure variation of the gas at the disturbed interface.

Gradients in the basic flow of the gas are neglected except at the
interface where it is recognized that the shear in the gas balances the shear
in the basic flow of the liquid. Away from the interface, the basic proper-
ties of the gas flow that influence the pressure disturbance are characterized
by parameters regarded as constants throughout the gas boundary layer. The
purpose of this investigation is to determine how those parameters affect the
stability of the thin liquid film.

Cartesian coordinates are introduced so that the interface coincides with
the (x;, Xxy) plane. The film of liquid flows over a solid wall, located at
X3 = -h, so that the x3 axis points away from the wall. Cartesian tensor
notation is used. The subscripts o and B range from 1 and 2 (two mutually
perpendicular directions in the plane of the interface), and repeated sub-
scripts imply a tensor summation over this range. The basic flow is taken to
be in the x; direction; however, a three-dimensional disturbance is consid-
ered. Furthermore, the wave amplitude is assumed to be sufficiently small that
the principle of superposition applies. Therefore, the two families of wave
crests shown in figure 1 may be treated independently.

DISTURBANCE EQUATIONS - LIQUID

Consider a three-dimensional disturbance of the basic flow whereby only
first-order terms are retained:

Ug(x3) + uy(x3) E
ujz(x3) E 1

P(x3) + p(x3) E

UOL(X]_, X2, X3, t)

U3(X1, XZ; X3; t)

—p_ (X]_, X2, X3, t)
where
E = exp i(kgxg - wt)

The wave numbers ki, ks are taken to be real. The wave normal has the
direction numbers

(k1, ko, 0)



The wave length of the disturbance in the direction of the wave normal is

given by 2N/k where k = /ki. The constant w is taken to be complex. The
real part of w 1is equal to the angular frequency of the disturbance, and the
imaginary part is equal to the time amplification factor of the disturbance.

The appropriate form of the disturbance equations is derived by
substituting the form of the disturbance introduced above into the equations

of motion of a viscous liquid

du u du — %u_ s%u
S o, s o _ 13 . o, o
3t B axg 3x3 p Xy 52 3%2
B 3
(2)
du, __ dug _ duy 1 5% 3°uy 3“ug
3T T U Ixs T W3 ax. T T o oax, 8TV T
B 3 b oXg ox2  ax
B 3
au,
= O
*B
and retaining first-order disturbance quantities. (Symbols are defined in
appendix A.) The basic flow satisfies
Uy (x3) = Ux(l + x3/h)
Uz (x3) =0 -h < x3 <0 (3)
P(x3) = pg - PEX3

where P, is the pressure at the undisturbed interface. It is considered
sufficiently general to allow the gravity vector to be normal to the (x;, x5)
plane. The disturbance equations are as follows:

3 dUq . kg d2 W
l(kBUB - m)ua + ug ax—a- = -1 E— p +V -d—x—z— Uy kzua
3
: 1 d d2
l(kBUB - (1))1.13 = - 'p— di + v Eé‘ u3 - k2U3 } (4)
3 3
. dus
l(kBuB) + dx =




|

In obtaining the disturbance equations, the fact that the basic flow
satisfies equations (3) has been utilized. When wu, (o = 1, 2) is eliminated
from the foregoing equations the disturbance pressure p is expressed in
terms of uj

Iy U _(y_w)dugf, v dduy o, duy
P =%t Y3 ax; <U k> el R e K a3 (5)
where
kﬂ
U=1x Y%

is the velocity component of the basic flow in the direction of the wave
normal. Eliminating p from the resulting equations yields the usual Orr-
Sommerfeld equation for the liquid film

L 2 H 2 2
m_2k2m+kuu3=i<u_%>§ia_kzu3 U S
dx; dx3 v dx? dx3

For a linear profile, dZU/dxi = 0.

DISTURBANCE EQUATIONS - GAS

The effect of viscosity is neglected in the disturbance motion of the
gas. The following three-dimensional disturbance is considered:

Uy + ug(x3)

tm
S

aa(x]’ Xp, X3, t)

usz(xy, Xp, X3, t) = uz(x3) E
(7)
P = Pg + p(X3) E
° = pg * plxz) E )
where
E = exp i(kgxg - wt)

e
I .4 3



and
57

Since viscosity is neglected in the disturbance motion of the gas, the
appropriate form of the disturbance equations may be obtained by substituting
the form of the disturbance introduced above into the equations of motion of
a compressible, inviscid gas.

_ _ A
Mo o My %y E2 a5
ot B 9xg 39x3 | F 39X,
3T4 3T3 U, =2 =

5t T UB Ix, T U ax, T = ®)

B 3 p 9X3
— — ou
%. + HB BL= b" .__§.
ot Xg BXB

J

and retaining first-order disturbance quantities. The basic flow satisfies

U]_ = Uoo
U2 =0
0 = X3 < = (9)
P = Pg
P = Pg

where all basic flow quantities are assumed constant. The basic flow may be
regarded as a suitable mean of an actual boundary-layer flow.

The disturbance equations are as follows:

2 1
L(kglg - wug = - = ikyp
2
. dp dp
i(kgUy - w)ug = - =2 S0 (10)
BB 3 o dx5
1(kBUB - m)p = _pm[l(kBuB) + d ] J



Eliminating uy (o = 1, 2) from the foregoing equations and employing the
relation

p = a2p
yields an expression for the disturbance pressure in terms of wu,

ip, (Ug - w/k)(duz/dx3)
kK [(Ug - w/k)?/a2] - 1

p = (11)

where

is the velocity component of the basic flow in the direction of the wave
normal. When p is eliminated from the resulting equations the disturbance
equation for the gas is

d2u (Ug - w/k)?

3 2 g _

i k [-———:;r————-- 1| u3=0 (12)
3 o0

Since the real part of w/k equals the phase velocity of the disturbed
interface, the choice of the proper solutions of equation (12) depends on
whether the component of the basic flow in the direction of the wave normal,
Ug, relative to the phase velocity is greater or less than the speed of
sound a_. If it is greater,equation (12) is solved for a disturbance that
originates at the interface.

Supersonic solution:

Ug - w/k)?
u; = A exp - ikJ/E—g——EEL_l_ -1 x5 (13)

a

©

where A 1is an arbitrary constant. If the phase velocity is less than a_
(subsonic), equation (12) is solved for a disturbance that decays as the
distance from the wall is increased in the positive direction of x3.

Subsonic solution:

Us - w/k)
uz = A exp - EJ/I - E_g—7f—__— X3 (14)



The disturbance pressure in terms of wus for the two cases is:

Supersonic
o (Ug - w/k)
P = U3 (15)
JIWg - w/x)2/a2] - 1
Subsonic
ip_(Ug - w/k)
P (16)

J1-TUg - w/k)2/a2]
The kinematic condition at the interface enables one to evaluate the

arbitrary constant A in the above expressions for wu3 in terms of the ampli-
tude of the displacement of the interface. Let the equation of the interface

be
X3{xy, X, t) = € exp i(kgxg - wt) (17)

The kinematic condition in the gas at the interface is

E3 = + UB e (18)

Neglecting second-order disturbance quantities, and evaluating uj at
x3 = 0 yields

uz = ik(Ug - w/k)e (19)

This relation enables one to evaluate the disturbance pressure of the gas at
the interface x3 = 0 in terms of €, the amplitude of the displacement. For

the two cases:
Supersonic
ikp(Ug - w/k)%e

p = (20)
JIUg - w/K)2/a2] - 1

Subsonic
—kpoo(Ug - w/k)e
p = (21)
J1 - [Ug - w/k)2/a2]

Subsequently these expressions for p will be used in formulating the
boundary conditions of the liquid at the interface. For this purpose, it is
considered sufficiently accurate to neglect the term w/k compared to the
term U, in the above expressions. The expressions that will be used
subsequently for the gas pressure are:

8



w

Supersonic
ikmeée
P = —=———= (22)
M2 -1
Subsonic
—kpwUze

o8 (23)

P =,/1 - M2

where M = Ug/a,. Note that the Mach number so defined is the projection of
the actual Mach number of the basic flow in the direction of the wave normal.
Hence, the flow may be subsonic across the wave crests when the basic flow is
supersonic.

Boundary Conditions

The boundary conditions at the interface are evaluated at the free
surface. The equation of the interface is

Y3(X1, X2, t) = & exp l(kBXB - Lut) (24)
and the kinematic condition in the liquid at the interface is

TP R | (25)
3 at B BxB

Neglecting second-order disturbance quantities and evaluating u3 at x3 =0
yields

uz = ik(U, - w/K)e (26)

where U, 1is the velocity of the liquid at the undisturbed interface in the
direction of the wave normal. The first boundary condition to be imposed at
the interface is that the discontinuity of normal stress equal the surface
tension. We have for the normal stress

_ |8 du, & d%x,
Pl o+ =-T
90Xy dx?

a

(27)

where the second-order terms in the expression for the interface curvature
have been neglected, and where T denotes the surface tension.

L,



The above expression evaluated at the disturbed interface is:

g au du
—(P+3—P—e+p> +<P+3Pe+p> +<2u83> < ) = Tk2e

(28)
If the effect of viscosity is neglected in the disturbance motion of
the gas and the relations satisfied by the basic flow are cancelled,
dug
—p - pge + p-2p —= = Tk2¢ (29)

3X3

In the above expression p is the only term that involves the gas, and all
quantities are to be evaluated at x,; = 0.

Substituting the relations given for and e by equations (5),
(22), and (26), respectively, into equation (29% yields the normal stress
condition for a supersonic gas flow

du ; d3u du
3 du iv 3 2 3
U, - w/k) —2 - uz 9+ 22 S —
1 dx, dx, k dxg dx g
1 ikng§ uj
= =( Tk? + pg +
P M2- 17 L (Uy - w/k)
(30)

and for a subsonic gas flow from equation (23)

dx3 dx3

2
= l(Tkz + pg - kngg \ Ug

JI - w2/ WUy - w/k)
(31)

The second boundary condition to be imposed at the interface is continuity of
tangential stress, that is

du . d3u du
3 du iv 3 2 3
(”I'N/k)m‘%m*T( % 1,

10



duy, 0T,
P\ 3x; T %,

<aﬁg aﬁé>
09X 9X3
J

When the effect of viscosity in the disturbance motion of the gas is neglected,

<.k a2y, du1> o
+ =

H 1 IU3 dxz £ dX3
3

. du,
U 1k2U3 + dX3 =0

Eliminating u, (a = 1, 2) for the foregoing equation and employing (4) yields

sl =

) (32)

T23[
g 1

(33)

3 2
d u3 + k2U _ Eﬁ_dzUB/dX3 =
dx2 7K Uy - w/k

(34)

For a linear velocity profile in the liquid, the last term in equation (34)
vanishes. In obtaining this boundary condition the following relation
satisfied by the basic flow has been utilized

U
— = 35
H h T (35)

where 1 1is the shear stress of the basic flow of gas exerted on the
interface in the direction of the wave normal

- kgTgy
k

T

Dimensionless Form of the Equations

The disturbance equations are made dimensionless by a suitable choice of
reference dimensional quantities. 1In the present case the depth of the film
h is chosen as the reference length, and the velocity of the film at the
undisturbed interface in the direction of the wave normal U; is chosen as
the reference velocity; the remaining reference quantity is the liquid
density p. For a linear velocity profile in the liquid the disturbance
differential equation (6) is transformed to

11



O - 202"t + at = 1oR[(F' - <) ("' - o?9)] (36)
where primes denote differentiation with respect to n and where

F' =U/Uy =1+n: -1<n<0

¢ = (w/K)/Uy
o = kh

$ = (i/kh) (uz/Uy)
R = Uh/v

For the supersonic case the boundary conditions at the interface-equations (30)
are transformed as follows:

1 1 a2 io )
(1-c)e' - ¢ - 355 (0" - 302¢") = [——-+ o ﬁ_____}
(37)
and for the subsonic case
2
F W CfR 1 - M2
(38)
where
2
F2 = Pi
gh
Uzph
w2 = L
T
2
1 Pelg
cfFR 2
£y
F and W are the Froude and Weber numbers, respectively. The boundary
conditions at the solid surface are
n=—1;¢=¢'=0 (39)

12
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The differential equation (36) and equations (37) to (39) for the boundary
conditions constitute an eigenvalue problem for determining the eigenvalue

c for given values of o, R, F, W, cg, and M. Another interpretation of the
parameter cg  can be examined if we note that since <t = u(Uy/h)

T = CfngE (40)

Numerical Method of Solution of Eigenvalue Problem

The eigenvalue problem formulated in the previous section is solved in
the manner employed in reference 7; namely, the parameters a, R, F, W, cg,
and M are fixed. Then values of ¢ are found for which equation (36) has
solutions satisfying the boundary conditions (eqs. (37)-(39)).

The eigenvalue c¢ and the corresponding eigenfunctions are obtained by
treating equation (36) as a nonlinear equation. A trial solution is obtained
by step-by-step numerical integration of the equation starting at n = 0 with
assumed starting values and with an assumed value of c¢. The boundary condi-
tions (eqs. (39), are evaluated at the solid surface n = -1. If the boundary
conditions are not satisfied, the starting values and c¢ are adjusted by
means of the Newton-Raphson procedure and another trial is made. To carry out
the solution of the eigenvalue problem it is convenient to rewrite the fourth-
order differential equation (36) as a system of second-order differential
equations. For this purpose, the variable s = ¢'' - a2 which is related to
the disturbance vorticity is introduced, and the differential equation (36)
and the boundary conditions equations (37)-(39) are written in terms of s as

follows:

o1 = OL2¢ + 5
(41)
s'' = a?s + ioR(1 + n - c)s
at n=20
s + 20%¢ = 0
(42)
s' ~ 202¢" —ia.{c f 79 - R{(c - D¢' + ¢]}-= 0
at n = -1
p = ¢' =0 (43)
where for the supersonic case
1 a2.> io 1
f=Rl —+ = )+ — ——— 44)
(ﬁFz w2 Cg 2 1 (
13
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and for the subsonic case

2
£=R (Q%-+ 95;> e (45)
F W f /1 - M2

To carry out the numerical integration of equations (41) four initial condi-
tions and a value for ¢ must be specified. It is assumed that the other
parameters have been specified. Since the differential equation and the
boundary conditions are homogeneous, it is permissible to set ¢ =1 at n = 0.
This fixes one of the initial conditions. The remaining initial conditions
may be obtained from the boundary conditions, provided one of them is speci-
fied. Designate as x the value of ¢'(0). The quantities x and ¢ must

be adjusted by trial so as to satisfy the boundary conditions at n = -1. The
initial conditions at n = 0 are given in terms of x and ¢ as follows:

o =1
¢! = x
46
s = -202 (46)
s' = 202x + ia{:c f T~ R[(c-1)x + l]}‘
To satisfy the boundary conditions at n = -1 the values x = ¢'(0) and c are
adjusted according to the Newton-Raphson procedure. To carry out this proce-
dure it is necessary to know how ¢ and ¢' vary with x and ¢ at n = -1.

This information can be supplied by formulating the perturbation equations
(ref. 7) associated with equations (41). The perturbation equations are
obtained by differentiating the terms in equations (41) with respect to X
and c. The appropriate initial values for the perturbation differential
equations are obtained by differentiating the terms in the boundary condi-
tions (eqs. (46)) with respect to x and c. Integrating the perturbation
differential equations and the original differential equations (41) enables
one to evaluate at n = -1 the pertinent quantities: ¢, ¢', ¢y, ¢x', bes
and ¢.'. The subscripts x and c denote differentiation with respect to

x and ¢, respectively.

The perturbation equations for x are

ox'" = afPx * Sx
(47)
s¢x'' = azsx + iaR(F' - c¢)sy
with the initial conditions
by =0
r _
¢ =1
- 48
Sy = 0 (48)

202 - iaR(c - 1)

14



The perturbation equations for ¢ are

¢C" = a2¢c + S¢
(49)
se¢'' = a?sc + iaR(F' - c)sc - iaRs
with the initial conditions

3\
¢c =0
b' =0
SC = 0 P (50)
Se' = -io S S Rx

(c - 1)?
o
For values of x and ¢ that yield at n = -1 approximate zeros of ¢

and ¢', a better approximation (x + Ax and c + Ac) is obtained by calculating
the corrections Ax and Ac from the Newton-Raphson equations

0

P + 9xAX + $cAC
(51)
0

o'+ ¢X'Ax + 9.'Ac

For given values of the parameters, the procedure outlined should converge to
an eigenvalue c.

The results obtained with this numerical procedure will be presented in
a subsequent section.

APPROXIMATE ANALYTIC SOLUTIONS

The region in the neighborhood of R = 0 is of particular interest to
the problem of wave formation in the melt layer of a body entering the atmos-
phere since the melt layer is usually highly viscous. Solutions valid in the
neighborhood of R = 0 may be obtained by an expansion in powers of R as
suggested by Yih (ref. 8). However, a somewhat simpler procedure than that
employed by Yih can be used to obtain solutions for 'fast'" waves, that is,
Re(c) >> 1 where Re denotes real part. This procedure consists in neglect-
ing the variable term n in comparison to the term c¢ - 1 in the differential
equation (41), solving the resulting equation, formulating the dispersion
relation in analytic form valid for all values of R, and examining the
behavior of the dispersion relation in the neighborhood of R = 0. This exam-
ination will be carried out by expanding the dispersion relation in a Taylor
series in R. The expansion will be carried out to first order in R. This
procedure should also yield approximate solutions when |c - 1| >> 1. When
the term n is omitted from equation (41), there are obtained the following
differential equations with constant coefficients

15

N



¢! =0L2¢+S
st' = 025 - iaR(c - 1)s
or
¢|| —0!.2¢=S
(52)
g'!? —BZS=0
where
B2 = a2 - iaR(c - 1) (53)
the boundary conditions (46) in terms of B are as follows:
Xo + (8% + a®)¢' - s' =0
(54)
s + 2a%¢ = 0
where
ia .
X = e f - ioR (55)
The solutions of equations (52) are
o = Ae”" + Be™?" 4 cef + pe BN
(56)

s = (B? - 0L2)CeBn + (B% - onz)De_Bn

where A, B, C, and D are arbitrary constants and where B8 denotes for
definiteness the root with positive real part of equation (53). For a non-
trivial solution of the eigenvalue problem, the substitution of equations (56)
into equations (43) and (54) requires the vanishing of the following secular

determinant:
e~ 0 R’ B eB

ae ® -ae® ge P _geP

0 (57)
X + a(B? + a?) X - a(BZ + a?) X + 2028 X - 2028

202 202 a? + g2 a? + g2

After some rearrangement the secular determinant may be written as follows:

16
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sinh o sinh B cosh o cosh B
o cosh a B cosh B o sinh a R sinh B (57)
=0
B2 + g2 208 -X/a -X/o
0 0 202 a? + g2
The dispersion relation for R = 0 may be obtained by evaluating the
secular determinant equation (57) for B = a after cancelling the factor
(8 - @)2 from the determinant, and setting B = o. The removal of (B - a)?
is required because the secular determinant is satisfied trivially for B8 = a.
To remove (B - )2 the determinant (57) is rearranged as follows:
sinh o sinh B - sinh a cosh o cosh B - cosh o
a cosh « B cosh B - a cosh a o sinh a B sinh B - o sinh o
=0
BZ + 0L2 _(B - a)z —X/O. 0
0 0 202 B2 - a?
(58)
Substituting the identities
sinh B = sinh o + 2 cosh 8 ; ¢ sinh £ 5 o
cosh 8 = cosh o + 2 sinh £ ; % sinh 8 5 ¢
into the determinant and dividing the second and fourth columns of the
resulting determinant by the factor (B - a) yields
_ 2 cosh £ % sinp B¢ 2 sinh £2 9 sinn B o
sinh a cosh a
B - a B - a
28 sinh 8% sinh B2 % 4 cosh o 28 cosh B2 sinh B2 % 4 sinh o
2 2 . 2 2
o cosh o o sinh o
B - a B - a
=0
B2 + o (6 - a) = 0
0 0 202 8 + a
(59)

17



letting B = a (noting that at B8 = a, 2 sinh[(B - @)/2]/(B - o) = 1) yields

sinh o cosh a cosh a sinh o
a cosh o a sinh o + cosh o o sinh o o cosh o + sinh a
202 0 -X/a 0 -
0 0 20 20
(60)
Evaluation of the determinant yields
(sinh a cosh o - a)(-X/a) = 202 (02 + cosh? a) (61)

With X given by equation (55), equation (61) yields at R = 0 for the sub-
sonic case

c - 1= 1 sinh a cosh o - a 62)

2a Cf'q ~ M2 a2 + cosh? o

and for the supersonic case,

c - 1= _l_ 1 sinh o cosh o - o (63)

2 >
YoMz o1 @

It should be noted that equations (62) and (63) are valid at R =0
regardless of the value of c¢. This can be seen by carrying out Yih's expan-
sion procedure for obtaining the dispersion relations. To first order (R = 0),
the coefficient of R in the differential equation (41) does not contribute
to the solution, so that neglecting the term n in comparison to the term
¢ - 1 is a superfluous assumption for R = 0. However, this is not the case
in the neighborhood of R = 0.

+

cosh? o

It will be shown subsequently that the dispersion relation in analytic
form (eq. (59),1is extremely useful especially when it is complemented with
the numerical method previously presented.

The physical interpretation of the limiting case R = 0 is discussed by
Yih (ref. 8) in connection with the stability of liquid flow down an inclined
plane. In the case R = 0 there is no disturbance motion, but merely a sur-
face corrugation that has no reason to be damped. Since the quantity c is
expressed in terms of a reference velocity, U,, the actual dimensional phase
velocity and amplification factor in the case of a surface corrugation would
be zero since Uy = 0 for a liquid layer with a large but finite viscosity.

Of considerable significance is the behavior of the dispersion relation

in this case of static corrugation. Equation (62) indicates that the subsonic
solutions are unstable at R = 0. This apparently surprising result can be
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clarified by realizing that the destabilizing action of the gas pressure as
indicated by equation (23) assumes a dominating role near R=0 (see eq. (38)).
Equation (63) indicates that the line R = 0 is a neutral curve for the
supersonic case. The behavior of c¢ in the neighborhood of R = 0 can be
determined from equations (53) and (59). Differentiation of the terms in
equation (53) regarding R as the independent variable yields at R = 0

dc dc dp _ . (¢ - 1) dc
drR -~ dB dr 2 df (64)
Now equation (59) can be regarded as an implicit equation connecting c¢ and

B, and the derivative dc/dR can be evaluated at R = 0 by differentiating
the determinant (59) with respect to R. This calculation is displayed in
appendix B. The result for the subsonic case is that the solutions become
less unstable as R increases from zero, indicating that all terms in equa-
tion (38) come into play. A further result is that the real part of ¢
decreases as R increases from zero, indicating, since Re(c) =1 at R = 0,
that the subsonic case does not exhibit the type of instability being examined
(phase velocity Re(c) greater than unity). Hence, the subsonic case will

no longer be considered; instead, attention will be devoted to the supersonic
case only. At R = 0 the result for the supersonic case is as follows:

de _ . [(c)? [3 _ 202 sinh o(cosh o + o sinh a) }_ LA 2-1[i , 92 _C,}}
o

dR 4o (02 + cosh20) (sinh o cosh a-o) F2 W2
(65)
where ¢' = ¢ - 1 and ¢ is given by equation (63).
Now
dc
c(R) = c(0) +{ 5= R+ . .. (66)
dR R=0

and since the right-hand side of equation (65) is purely imaginary, this
equation gives the damping or amplification of the disturbance in the neigh-
borhood of R = 0. Setting dc/dR = 0 in equation (65) yields a relation
among the parameters on the right-hand side valid for neutral disturbances.
These relations will be presented subsequently, after the approximation
inherent in equation (65) is evaluated by comparing the results of this equa-
tion with the numerical results. Before presenting these further results, it
is of interest to examine solutions of the eigenvalue problem for long waves
(small «a).

For finite values of R the solution of the eigenvalue problem may be
obtained in the neighborhood of o = 0 by expansion in powers of o as
suggested by Yih, reference 8. Solutions of equations (41) are sought near
o =0 with ¢ near 1 (eq. (52) indicates that ¢ =1 at a = 0). The proce-
dure set forth for carrying out the numerical solution will be used for this
analytic solution. The initial conditions to be used are equations (46).
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Let

X = Xo + 0X) +

c=1+ac; +
¢=¢0+a¢1+
S = S5 + as] +

Substituting these relations in equation (41) yields to lowest order in «o
(67)

the initial conditions equations (46) to lowest order in o are at n =0

o =1 )
' = Xg
5 (68)
s =0
o iR 1
C] g2 J
The satisfaction of the boundary conditions at n = -1: equations (43)

yield two equations for the determination of the two quantities X, and
c;. This yields the following dispersion relation near o = 0

c=1-2= (69)

This expression indicates that the line o = 0 is a neutral curve. Further-
more, it can be verified that dc/dR computed from equation (69) agrees with
equation (65) to lowest order in a.

To summarize the results of this section for the supersonic case, we can
say that the line a = 0 is a neutral curve, that the line R = 0 is a
neutral curve, that the rate of amplification near the line R = 0 may be
obtained, approximately, from equation (65) and that the relation between the
parameters for neutral disturbances near the line R = 0 may be obtained,
approximately, from equation (65) by setting the left-hand side equal to zero.
The validity of the approximation inherent in equation (65) will be assessed
for selected values of the parameters in the following section.
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Comparison of Approximate Solutions
With Numerical Solutions

The numerical procedure described previously was programmed on the IBM
7094 digital computer at Ames Research Center. Single precision complex arith-
metic was used. The numerical integration was started with the Runge-Kutta
formulas and continued with the Adams-Moulton formulas.

The step size was externally controlled and set so that there was no

significant change in the eigenvalue when the example was rerun with a step

0002 y T T T T T size equal to half of the original
value. The step size of 1/32 was
found to be satisfactory for most rums.
To assure convergence to an eigenvalue
1 the sum of the absolute values of the
discrepancies of the computed boundary
4 values was required to be less than

5x1073,

-.0002

Im(c)
-0004 |-

-0006

The approximate analytical
solutions obtained in the previous sec-
o o 2 o3 04 05 06 07T .8tjion were also obtained by means of
(a) ce? -1 = 0.001 the numerical procgdure for selected
values of the pertinent parameters.

-0008

.0I8 T T T T T

Because of the large number of
parameters required to describe the
physical configuration under study,
and the ranges of these parameters,
analytic formulas, such as equations
{63) and (65), are helpful for describ-
ing the results of the stability analy-
sis. Although they may be approximate,
analytic solutions also simplify the
searching process usually required to
find a neutral point.

.Ole
.014
012
.010

008
Im(c)

006
The degree of approximation

inherent in equation (65) may be deter-
mined from a comparison of the evalua-
tions obtained from that equation with
the numerical solutions. These solu-
tions are compared in figure 2 which
gives the numerical solutions for

R = 0.01 and values of Im(c) (Im

004

-.002 . .
820 22 24 26 .28 denotes imaginary part). Also shown
in figure 2 are the extrapolations
) ceME ~ T = 0.005 obtained from equation {(66) with

. . . . R = 0.01. It can be seen from this
Figure 2.- Comparison of numerical (dashed line) Fi . 1 .
and approximate (solid line) determination of 1gu?e that the approximate so Utlol}
a neutral point at R = 0.01 for same value of provides values close to those obtained
parameters as given in figure 4. by the numerical method. For example,

21



0 . . e it can be seen from figure 2(b) that
the numerical solutions yield a value
of o = 0.187; whereas the approximate
solutions yield o = 0.185 for a
neutral disturbance (Im(c) = 0). This
—2r 1 agreement is considered sufficiently
accurate for the stability results.
The parameters used to describe the
kinetics of the liquid film are the
depth of the film, h, and the velocity
of the film at the interface, U,. The
) results shown in figure 2 apply to a
Im(c) film with h =0.1 cm and Uy =4 cm/sec.

- The numerical solutions can be
checked by means of equation (69).

The results obtained from equation (69)
are exact for vanishingly small o

and are compared with numerical

-8r 1 results at R = 150 in figure 3.

These two comparisons for
selected values of the parameters
lend credence to both the numerical

_ 1 L - . .
95 .0010 , 0020 o0o30 and approximate analytic results. The

_ results obtained for a more extensive

Figure 3.- Comparison of numerical solutions range of parameters are presented in

marked (A) with equation (69) shown as a N
straight line at R = 150; cg/M? - 1 = 0.001, the next section.

Uy = 4 cm/sec, h = 0.1 cm, T = 72 dynes/cm,
g = 980 cm/sec?.

RESULTS AND DISCUSSION

The results of a stability analysis are usually displayed in an o - R
diagram on which the neutral curve (Im(c) = 0) is drawn. As previously stated,
the line o = 0 is a neutral curve and for the supersonic case, the line
R = 0 is a neutral curve. However, there are also neutral curves with «a
different from zero emanating from the line R = 0, for example, see figure 2.
Starting from these points near R = 0, the neutral curves were traced as R
increased by solving the eigenvalue problem numerically. The results of these
computations are shown in figure 4.

An interesting question concerning the neutral curves in figure 4 is why
does one pass from region of instability to stability as the neutral curve is
crossed when R is increased at a fixed value of «o. This result is contrary
to the usual situation (Tollmien-Schlichting instabilities). The answer to
the question lies in clarifying the source of energy for the two types of
disturbance motion. In the Tollmien-Schlichting instability with c¢ < 1 the
disturbance energy is supplied by the mean motion of the film. In the
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5 . . . " . . . present case with ¢ > 1 the
disturbance energy of the film is
at - supplied by the motion of the gas.

From equation (37) it can be
seen that as the Reynolds number R
of the film is increased for fixed
cg the influence of the last term
in the bracket on the right-hand
side of that equation is reduced.
L . L ) . The other two terms in the bracket
© 200 40 60 8 100 120 40 160  glways tend to stabilize the distur-
Fi . bance motion for the cases shown in
gure 4.- Neutral curve for various values of .
the parameter cg/M2 - 1. Region below each figure 4. These two terms become

of the curves is stable. U, = 4 cm/sec, dominant when R 1is sufficiently
h =0.1 em, T = 72 dynes/cm, g = 980 cm/sec?. 1arge_

cf+/M2-1 =005

AF .00l J

The last term in the bracket on

the right-hand side of equation (37)
is proportional to the pressure coefficient for supersonic flow past a wavy
wall (ref. 9). Furthermore, the disturbance pressure is not in phase with the
wall and a wave drag is exerted on the wall (the disturbed gas-liquid inter-
face in the present case). These phase relations are analogous in a sense to
the phase relations in the Tollmien-Schlichting type instability where the
mechanism for wave generation is the change in phase across the liquid layer
(ref. 10). However, as opposed to the Tollmien-Schlichting type of instabil-
ity where a description of the mechanism is rather involved, the mechanism of
wave generation in the present case can simply be described as supersonic
wave drag. Because the oblique waves under consideration are three dimen-
sional, it is not only necessary that the external stream be supersonic, but
also that the component of the external flow across the crests of the waves be
supersonic.

Since these general properties are evident in the o - R diagram for a
few selected values of the parameters, this representation will not be pursued
further as a means for displaying the results of the analysis. Rather,
another representation will be used which is better suited for displaying the
results for small values of R.

Because equation (65) provides sufficiently accurate answers for small
R, the case of interest, it will form the basis for presenting the results for
neutral disturbances covering a wide range of parameters. Also, it should be
noted from figure 4 that the neutral curves are nearly horizontal, so that the
values of o established for neutral points by means of equation (65) near

R = 0 for a given value of chM2 - 1 should correspond approximately to the
same value of cf»/M2 - 1 at much larger values of R.
The values of o corresponding to neutral points may be established if

one plots equation (65) as a function of o for given values of the param-
eters and notes where the curve crosses zero. However, it is more convenient
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to set the left-hand side of equation (65) to zero and solve the resulting

equation. This solution is accomplished by eliminating the term cf;/M2 -1
by means of equation (63) and rearranging to obtain the following quadratic
equation in c'

3 2 2
a 2 2 _ 20° cosh” a 2, 4 (1 o ec\=0
2(sinh a cosh a - q) 3 cosh® o + sinh o cosh a —u)‘: te F2 * w2

(70)

As stated previously the kinematics of the liquid film are characterized
by h and Uy;. Given these values and values of a, the surface tension coeffi-
cient T, and the acceleration of gravity g, all the coefficients in equa-
tion (70) can be evaluated and the resulting quadratic equation can be solved
for c¢'. The choice of the sign before the radical in the quadratic formula
can be decided by noting that for large o the coefficient of c'? is
positive. This fact requires that the positive sign be chosen for positive
roots (c' positive). After the quadratic equation is solved the parameter

chM2 - 1 is evaluated by means of equation (63). This leads to

ce #2 _ 1 = Sinh o cosh a - @

2ac' (a? + cosh? a)

The results for neutral disturbances are displayed in dimensional form by plot-

ting the wavelength of the disturbance X = 27h/a against CfVMZ - 1. These
results are displayed in figure 5. On each figure the quantity hU; is held
constant. The quantity (1/2)hUy = Q' 1is the volume flow rate per unit width

in the direction of the wave normal. Note that for a given value of cg/M2 -1,
there are either two neutral wavelengths or none. It should be noted that
the Reynolds number of the film R is not specified for any of the results
in figure 5. As stated previously these results should hold over a range of
Reynolds numbers and become increasingly more accurate as the Reynolds number
approaches zero. For wavelengths much smaller than the depth of the film the
results in figure 5 may be compared with the results of Willson and Chang
(ref. 11) who treated the case of an infinitely deep liquid. One of their
results is that the wavelength is an increasing function of the Mach number.
This trend is evident from an inspection of figure 5 for short wavelengths.
However, in contrast to their result, the wavelength does not approach an
asymptotic value as the Mach number increases. One should be reminded that
the variables and parameters used in figure 5 correspond to quantities
measured in the direction of the wave normal, not in the direction of the

external stream.
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Figure S.- Film wavelength versus stream parameters for various depths of film; T = 21 dynes/cm, g = 980 cm/sec?.
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CONCLUSIONS

It is concluded from the foregoing linear analysis, that oblique waves
will be generated in the melt layer of a body entering the atmosphere even
though the layer is extremely viscous. The mechanism of the wave generation
is supersonic wave drag. For the type of oblique waves considered, the
direction of the wave crests is inclined not at the Mach angle of the external
stream but the direction is such so that there is always supersonic flow
across their crests. The wavelength of neutral disturbances is governed by
parameters associated with the external stream and with the melt layer itself.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Aug. 28, 1968
124-07-02-23-00-21
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APPENDIX A

PRINCIPAL NOMENCLATURE

a speed of sound

c phase velocity, dimensionless

£ defined by equation (44) or (45)

F! velocity of liquid

h depth of film

i imaginary unit

Im( ) imaginary part

k wave number

P pressure

P pressure, basic flow

Q' (1/2)Uth quantity of flow per unit width
Re( ) real part

s disturbance vorticity, dimensionless
t time

T surface tension coefficient

u velocity component

U velocity component, basic flow

x ¢' (0)

X defined by equation (55)

X1,X2,X3 Cartesian coordinates

o wave number, dimensionless
R defined by equation (53)

Y ratio of specific heats

Lk,
i



a,B

)

Cf

28

amplitude of disturbance of the interface
coordinate normal to surface, dimensionless
wavelength

dynamic viscosity, liquid

kinematic viscosity, liquid

density

stress components, gas

disturbance stream function, dimensionless

angular frequency of disturbance
Subscripts

differentiation with respect to ¢

gas quantity evaluated at gas-liquid interface

liquid quantity evaluated at gas-liquid interface

external flow direction and differentiation with respect to
tensor index, range (1-2)

external stream conditions

Superscript

total quantity

Dimensionless Groups
friction coefficient
Froude number
Mach number
Reynolds number

Weber number

X



APPENDIX B

CALCULATION OF DERIVATIVE

Differentiation of the determinant (eq. (59)) with respect to B and
evaluation at B = o yields

0 cosh o cosh « sinh o
0 o sinh o + cosh o o sinh o o cosh ¢ + sinh o
24 0 =X 0
_ o
0 0 202 2a
sinh o sinh o cosh a sinh o
1| cosh a o cosh a + 2 sinh o o sinh o o cosh a + sinh o
+ 5 «
202 -2 = 0
o
0 0 202 2a
sinh o cosh o 0 sinh «
0. cosh a o sinh a + cosh a 0 o cosh o + sinh o
+
2 d/-X
20, 0 a8 <a> 0
0 0 0 20,
sinh o cosh o cosh o cosh o
1 | cosh a o sinh o + cosh a o sinh o a sinh o + 2 cosh
+ 5 <
202 0 = 0
o
0 0 202 2
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Evaluation of the four determinants in order yields
-4a" - 402 cosh? o + 20 sinh? a(%?)
-4a3 sinh o cosh a - 202(1 + a2)cosh? a + 4o" sinh? a
. d (-X
+20(sinh o cosh a - o) 3§-<77>
+ (sinh o cosh o - a) <§§:>- 202 (1 + a2)cosh? o = 0
Combining like terms yields
-402 (202 + 2 cosh? o + a sinh o cosh o)
-X . .o .
+ 7;—(2a sinh4 o + sinh a cosh a - «a)

d /-X .
+ 20 a§-<5;{> (sinh o cosh a - a) =0 (B1)

SUPERSONIC CASE

Evaluating equation (55) at R = 0 yields

ia

X = T -1 f
From equation (44) evaluated at R = 0
fgode 1
Cf 2 -1
Hence,
(i#) - o 1 _ 202 (a2 + cosh? o) (B2)
a c -1 Cf/ﬁﬁ‘j“I' sinh o cosh a - o

where the second equality follows after equation (63) is used.

In order to evaluate (d/dB)X it is convenient to express X in terms of
B rather than R. From equations (44), (53), and (55) we have

=X = (82 _ 0,'ZJ(C _ 1)—2(%4_;_2 +M - (82 - OLZ)(C - 1)‘1

F ceMZ 1
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Differentiation of this expression with respect to B taking into account
that c¢ is to be regarded as a function of g yields

1[1(_)() 2[__1__ L+£2_>_ 1 ] o 1 de
o | 38 . (c - D2\F2 w2 c-1 (c - D% cohz - 1 9
=a
(B3)

Substituting equations (B2) and (B3) into equation (Bl) and rearranging yields

(c - 1) de _ ()2 [, __20% sinh a(cosh a + o sinh o)
o ds 4a

(a2 + cosh? a)(sinh a cosh a - a)
' 2

-C—-cf/Mz— 1<_l+.°‘__ c)
o F2 w2

This is the desired result, since

SUBSONIC CASE

Substituting equation (45) into equation (55) and evaluating at R = 0
yields

-X __-iao 1 _ -2a?(a? + cosh? a) (B4)
a c¢c-1 cf/I—r—ME_ " sinh o cosh a - q
where the second equality follows after equation (62) is used.
For the evaluation of the derivative, X is expressed in terms of B as
follows:
X = (82 - a?)(c - 1) 2<—+ —> (c - 171 - (8% - a?)(c - )7
s

Differentiating this expression with respect to B8, regarding c¢ as a func-
tion of B as before, yields:

< >] [ 1 1 a? 1 } ia 1 dc
—_— -
{dB (c - 1)2 W2 c-1 ce/T 2 (c - D2 B

(B5)
31




Substituting equations (B4) and (B5) into equation (B1) and rearranging yields

de |, (c-1)de

dR ~ 2 dg
_ 1 1 sinh o cosh a - a> 2 __i sinhacosha-a/1 o
202 o2 + cosh? o F2 w2

T 4a3 cf/1 - M2 a2 + cosh? a

. i‘:(c - 1)2 <4a2 + 4 cosh? o + 20 sinh a cosh o
4o a2 + cosh? o

2a¢ sinh? o + sinh o cosh o - a
+ -
sinh a cosh a - a

The real part of this expression indicates that Re(dc/dR) is negative at
R = 0. The imaginary part indicates that Im(dc/dR) is also negative at

R = 0.
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